The oncogenic TLS-ERG fusion protein exerts different effects in hematopoietic cells and fibroblasts.

نویسندگان

  • Junhui Zou
  • Hitoshi Ichikawa
  • Michael L Blackburn
  • Hsien-Ming Hu
  • Anna Zielinska-Kwiatkowska
  • Qi Mei
  • Gerald J Roth
  • Howard A Chansky
  • Liu Yang
چکیده

The oncogenic TLS-ERG fusion protein is found in human myeloid leukemia and Ewing's sarcoma as a result of specific chromosomal translocation. To unveil the potential mechanism(s) underlying cellular transformation, we have investigated the effects of TLS-ERG on both gene transcription and RNA splicing. Here we show that the TLS protein forms complexes with RNA polymerase II (Pol II) and the serine-arginine family of splicing factors in vivo. Deletion analysis of TLS-ERG in both mouse L-G myeloid progenitor cells and NIH 3T3 fibroblasts revealed that the RNA Pol II-interacting domain of TLS-ERG resides within the first 173 amino acids. While TLS-ERG repressed expression of the luciferase reporter gene driven by glycoprotein IX promoter in L-G cells but not in NIH 3T3 cells, the fusion protein was able to affect splicing of the E1A reporter in NIH 3T3 cells but not in L-G cells. To identify potential target genes of TLS-ERG, the fusion protein and its mutants were stably expressed in both L-G and NIH 3T3 cells through retroviral transduction. Microarray analysis of RNA samples from these cells showed that TLS-ERG activates two different sets of genes sharing little similarity in the two cell lines. Taken together, these results suggest that the oncogenic TLS-ERG fusion protein transforms hematopoietic cells and fibroblasts via different pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein.

The translocation liposarcoma protein TLS has recently been shown to function as an adapter molecule coupling gene transcription to RNA splicing. Here we demonstrate that YB-1, a protein known to play important roles in transcription and translation, interacts with the COOH-terminal domains of TLS and the structurally related Ewing's sarcoma protein EWS. Through this interaction, YB-1 is recrui...

متن کامل

TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins.

The translocation liposarcoma (TLS) gene is fused to the ETS-related gene (ERG) in human myeloid leukemia, resulting in the generation of a TLS-ERG protein. We demonstrate that both TLS and the TLS-ERG leukemia fusion protein bind to RNA polymerase II through the TLS N-terminal domain, which is retained in the fusion protein; however, TLS recruits members of the serine-arginine (SR) family of s...

متن کامل

TLS-ERG leukemia fusion protein deregulates cyclin-dependent kinase 1 and blocks terminal differentiation of myeloid progenitor cells.

TLS-ERG fusion protein is derived from the t(16;21) translocation found in human myeloid leukemia. Here, we show that retroviral transduction of TLS-ERG confers a growth advantage to L-G myeloid progenitor cells and blocks terminal differentiation. We found that the level of cyclin-dependent kinase 1 (Cdk1) protein was significantly decreased in controls but unchanged in TLS-ERG-expressing cell...

متن کامل

The Ews-ERG Fusion Protein Can Initiate Neoplasia from Lineage-Committed Haematopoietic Cells

The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether...

متن کامل

Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells.

Many chimeric oncogenes have been identified by virtue of the association between chromosomal translocation and specific human leukemias. However, the biological mechanism by which these oncogenes disrupt the developmental program of normal human hematopoietic cells during the initiation of the leukemogenic process is poorly understood due to the absence of an appropriate experimental system to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 14  شماره 

صفحات  -

تاریخ انتشار 2005